ckip_transformers.nlp.driver module

This module implements the CKIP Transformers NLP drivers.

class ckip_transformers.nlp.driver.CkipWordSegmenter(model: str = 'bert-base', **kwargs)[source]

Bases: CkipTokenClassification

The word segmentation driver.

Parameters
  • model (str optional, defaults to “bert-base”.) – The pretrained model name provided by CKIP Transformers.

  • model_name (str optional, overwrites model) – The custom pretrained model name (e.g. 'ckiplab/bert-base-chinese-ws').

  • device (int, optional, defaults to -1) – Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id.

__call__(input_text: List[str], *, use_delim: bool = False, **kwargs) List[List[str]][source]

Call the driver.

Parameters
  • input_text (List[str]) – The input sentences. Each sentence is a string.

  • use_delim (bool, optional, defaults to False) – Segment sentence (internally) using delim_set.

  • delim_set (str, optional, defaults to ',,。::;;!!??') – Used for sentence segmentation if use_delim=True.

  • batch_size (int, optional, defaults to 256) – The size of mini-batch.

  • max_length (int, optional) – The maximum length of the sentence, must not longer then the maximum sequence length for this model (i.e. tokenizer.model_max_length).

  • show_progress (int, optional, defaults to True) – Show progress bar.

  • pin_memory (bool, optional, defaults to True) – Pin memory in order to accelerate the speed of data transfer to the GPU. This option is incompatible with multiprocessing.

Returns

List[List[str]] – A list of list of words (str).

class ckip_transformers.nlp.driver.CkipPosTagger(model: str = 'bert-base', **kwargs)[source]

Bases: CkipTokenClassification

The part-of-speech tagging driver.

Parameters
  • model (str optional, defaults to “bert-base”.) – The pretrained model name provided by CKIP Transformers.

  • model_name (str optional, overwrites model) – The custom pretrained model name (e.g. 'ckiplab/bert-base-chinese-pos').

  • device (int, optional, defaults to -1) – Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id.

__call__(input_text: List[List[str]], *, use_delim: bool = True, **kwargs) List[List[str]][source]

Call the driver.

Parameters
  • input_text (List[List[str]]) – The input sentences. Each sentence is a list of strings (words).

  • use_delim (bool, optional, defaults to True) – Segment sentence (internally) using delim_set.

  • delim_set (str, optional, defaults to ',,。::;;!!??') – Used for sentence segmentation if use_delim=True.

  • batch_size (int, optional, defaults to 256) – The size of mini-batch.

  • max_length (int, optional) – The maximum length of the sentence, must not longer then the maximum sequence length for this model (i.e. tokenizer.model_max_length).

  • show_progress (int, optional, defaults to True) – Show progress bar.

  • pin_memory (bool, optional, defaults to True) – Pin memory in order to accelerate the speed of data transfer to the GPU. This option is incompatible with multiprocessing.

Returns

List[List[str]] – A list of list of POS tags (str).

class ckip_transformers.nlp.driver.CkipNerChunker(model: str = 'bert-base', **kwargs)[source]

Bases: CkipTokenClassification

The named-entity recognition driver.

Parameters
  • model (str optional, defaults to “bert-base”.) – The pretrained model name provided by CKIP Transformers.

  • model_name (str optional, overwrites model) – The custom pretrained model name (e.g. 'ckiplab/bert-base-chinese-ner').

  • device (int, optional, defaults to -1) – Device ordinal for CPU/GPU supports. Setting this to -1 will leverage CPU, a positive will run the model on the associated CUDA device id.

__call__(input_text: List[str], *, use_delim: bool = False, **kwargs) List[List[NerToken]][source]

Call the driver.

Parameters
  • input_text (List[str]) – The input sentences. Each sentence is a string.

  • use_delim (bool, optional, defaults to False) – Segment sentence (internally) using delim_set.

  • delim_set (str, optional, defaults to ',,。::;;!!??') – Used for sentence segmentation if use_delim=True.

  • batch_size (int, optional, defaults to 256) – The size of mini-batch.

  • max_length (int, optional) – The maximum length of the sentence, must not longer then the maximum sequence length for this model (i.e. tokenizer.model_max_length).

  • show_progress (int, optional, defaults to True) – Show progress bar.

  • pin_memory (bool, optional, defaults to True) – Pin memory in order to accelerate the speed of data transfer to the GPU. This option is incompatible with multiprocessing.

Returns

List[List[NerToken]] – A list of list of entities (NerToken).